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Abstract. The method of time-ordered cumulants is used to investigate the behaviour of 
pulses in a one-dimensional medium in which the phase speed is a random function of space 
and time. A linear partial differential equation is obtained for the average pulse profile 
( E ( x ,  t ) ) .  The dispersion relation between frequency and wavenumber is obtained and used 
to solve the initial-value problem for the infinite medium. 

1. Introduction 

It is our purpose in this paper to investigate pulse propagation in a spatially and 
temporally varying random medium. Part of our interest is in the physical phenomenon 
itself, while part is in the mathematical technique used. The method of ordered 
cumulants (Fox 1976) is used to render the problem in an exactly tractable form, which 
simplifies even further as the result of our assumption that the time correlation is a Dirac 
delta function. 

The principal result of our analysis is equation (3.24), which displays the mean, 
(E(x ,  t ) ) ,  as the solution of a hyperbolic, linear partial differential equation. This result 
is in contrast with other methods (bilocal approximation, two-timing, Feynman 
diagrams, etc) which necessarily involve approximation procedures (Frisch 1968, 
Tatarski 1971, Ishimaru 1977). 

Extension of the analysis to three dimensions and the development of the Fokker- 
Planck equation for the covariance ( E ( x l ,  t l )E(xz ,  f 2 ) )  are the subject of future pub- 
lications. Reference is also made to our solution of the corresponding random heat 
equation (Fox and Barakat 1978). 

2. Formulation of problem 

Our basic equation is not the wave equation per se, but the vector equation 

~ E ( x ,  t ) / a t  = C ( X ,  t ) r (aE(x ,  t ) / a x )  

where E(x,  t )  is 
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and 

0 1  r-1 1 0 '  1 (2.3) 

The speed c(x, t )  is taken to be a random function of both x and t. In particular, we take 
it to be of the form 

(2.4) 

where p ( x ,  t )  is a real-valued, zero-mean, stationary gaussian random process with a 
very small variance, i.e. 

k ( x ,  i ) )  = co ( p ( x ,  t ) )  = 0 (2.5) 

( p ( x l ,  t l ) p ( x 2 ,  f 2 ) )  = 2R,(xl -x2)S( t l  - t z ) .  (2.6) 

The factor two is included for convenience in the analysis and will be factored out in the 
end; note that ai = 2R,(0). We call attention to the fact that we are allowing p to be 
time dependent as well as space dependent. 

c(x, t )  = co(1 + p ( x ,  t ) )  

Equation (2.1),  when written out in component form, is 

aEl/at = c aE2/ax aE,/at = c aEl/ax.  (2.7) 

To obtain a wave equation for E l  (and E2)  differentiate the first equation with respect to 
t ,  the second equation with respect to x ,  and eliminate E2: 

The last term on the right-hand side involving E2 can be eliminated via the first of 
equations (2.7); the final result is 

a2E d2E a@ aE - 1  ap aE 
ax ax ax at at z - c o ( l + p )  y = c 3 1 + p ) - - + ( l + p )  -- (2.9) 

where we now omit the subscript on E. (This equation is also satisfied by E2.) The 
left-hand side is the usual scalar wave equation, but with a random space-time phase 
velocity. The fact that c = c(x ,  t )  means that the medium is now dispersive. Equation 
(2.9) is the basic scalar wave equation governing the propagation of E ( x ,  t ) .  

The left-hand side of equation (2.9) set equal to zero is the equation usually studied 
in the literature with p depending only on x but not on t. However, second-order 
differential wave equations are usually derived from two coupled first-order equations 
such as in equation (2.7). Therefore, equation (2.9) in its entirety is the correct 
second-order equation when the phase velocity is spatially and temporally modulated. 
Consequently, our subsequent analysis commences with equation (2.9). 

3. Solution by time-ordered cumulants 

With the background information, we now return to equation (2.1) and go to an 
interaction representation 
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Consequently 

aE'(x, t ) / a t  = exp(-tcoI'a,)cOp(x, t)ra, exp(+rcorax)E'(x, t )  

= cOpf(x,  t)r(aE'(x,  t,/ax) 

where 

Ip'(x, t )  E exp(-tcoI'a,)Ip (x, t )  exp(+tcordx) (3.3) 

where I is the 2 x 2 unit matrix. The solution to equation (3.2) is 

E'(x, t )  = Y exp( jo'A(x, s) ds)E'(x, 0) (3.4) 

where A(x, t )  = corpr(x ,  t ) d ,  and 7 is the time-ordered exponential operator defined 
by (Fox 1976) 

F exp( jot A (x, s) ds) 

= I + l ' A ( x , s ) d s +  0 n = 2  f ['['' 0 0 . . .  j ' "A(x , t l )A(x , t2) .  0 . .A(x ,  tn)dt, .  . . d t l .  

(3.5) 

We now take the ensemble average of equation ((3.4) 

(E'(x, t ) )  = (Yexp(  I,'A(x, s)  ds))E'(x, 0) 

where G'"'(s) is the nth time-ordered cumulant. Actually this formula defines G'"'(s). 
The explicit relation between A'"' and G'" is (Fox 1976) 

The sum is taken over 
m 

n = 1 Iml. 
1 = 1  

The integral over A'"(s) is defined as 

. . .  

(3.7) 

(,3.8) 

dtl. (3.9) 

Equation (3.7) can be inverted to give G'"' in terms of A"' (Fox 1976). 
It can be shown that 

io' G'"'(s) ds = 0 for n > 2 (3.10) 

if p(x,  t )  is delta-correlated in time (which is exactly the case we are discussing). 
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Consequently, we need only concern ourselves with the time integrals of G“’(s) and 
G‘2’(s). Now 

G“’(s) ds = (A(t1)) dtl = 0, I’ I: 
so that equation (3.6) becomes 

(E‘(x, t ) )  = Y exp( inf G‘2’(s) ds)E’(x, 0). 

(3.11) 

(3.12) 

The evaluation of the integral of G‘2’(s) can be carried by the sequence of steps 

jn‘ G”’(s) ds = c i  j js exp(-scJa,)(p(x, s)  exp[-(s -s’)cnrax] 
o n  

x raxp(x,  s’)) exp(+s’c,Jd,)ra, ds’ ds 

x exp(+scJdX)2S(s - s’) ds’ ds 

i = Cir i,’ exp(-scorax)i-  ~ , ( x  -y) lS=,ax  exp(+scora,) ds. 
iJ 

(3.13) 
I d  r’ 

Upon differentiating equation 13.13) and using (3.12),  we have 

which upon transfering back to the original representation via equation (2.1 1) becomes 

Note that 

a - (3.17) R,(x - Y ) / , = ,  = 0 ;  

hence 

a a a2 
- (E(x, t ) )  = c o r  - (E(x, t ) ) +  cirR,(O) 7 (E(x, t)). at ax ax (3.18) 

To obtain a single partial differential equation for ( E l )  (or ( E z ) ) ,  we first express 
equation (3.18) in component form: 
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Differentiate equation (3.21) with respect to t ,  and then substitute equation (3.19) 
into it :  

(3.21) 

To eliminate the (E2) term on the right-hand side, differentiate equation (3.20) twice 
with respect to x and substitute into equation (3.21). The final result is 

(3.22) 

We can also show that (E2) satisfies the same equation. At this point we can set 
CT, = 2R,(0) =variance of p(x,  t )  and rewrite equation (3.22) as 2 

where we now omit the subscript on E. 
Let us rewrite this equation in the form 

(3.23) 

(3.24) 

so that the equation consists of the usual deterministic wave equation plus a pertur- 
bation term involving a diffusion equation. In accordance with the theory of high-order 
partial differential equations as developed by Whitham (1974), the highest-order 
temporal derivatives govern the short-time transient motion while the lowest-order 
temporal derivatives govern the long-time motion. Thus equation (3.24) can be 
considered in the following manner. At short times after the pulse is ‘launched’, the 
wavefront of ( E )  propagates at speed co because the randomness of the medium has not 
had sufficient time to react with the pulse. However, as the time is increased, the 
random medium manifests itself through the lower-order diffusion term and causes the 
pulse to become dispersive. 

4. Initial-value problem 

We now consider the initial-value problem for an infinite medium (-cc < x <CO).  In 
order to solve this problem we must first obtain the dispersion relation between 
frequency w and wavenumber k. Assume that 

(4.1) (E(x, t ) )  = exp[i(kx - w t ) ]  

and substitute into equation (3.23) with the result 
2 2 2  2 2  1 4 4 4  w 2  +icoa,k w - (cok +acoa,k ) = 0.  

The solutions of this equation are 

(4.3) 
w 1  = cok -zicoa,k 1 2 2  w2 = -cok - ZicOu,k 1 2 2  , 
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Note that the U ’ S  are complex-valued functions of at which become real-valued when 
a& = 0 as required. At this point it is convenient to use the elegant formalism of Eckart 
(1948) and write 

2 

H l ( k )  = +cok Hz(k) = -cok 
(4.4) 

where the real functions H1,H2 are called the Hamiltonian functions of the wave 
equation and the real functions D1, Dz are called its logarithmic decrements. 

The Fourier solution of the initial value problem can be shown to be given by 
(Eckart 1948) 

Dl (k )  = D2(k) = D ( k )  =&oa tk2  

F ( k )  exp[i(kx -Hl(k) t ]  exp(-D(k)t) dk 

. r 0 3  

+’ 1 F ( k )  exp[i(kx -H2(k)t]  exp(-D(k)t) dk. (4.5) 21T -w 

The integrals represent pulses travelling to the right and left of the origin. At time t = 0, 
we have 

.CO 

so that the spatial spectrum of the initial pulse is 

F ( k )  = f j ( E ( x ,  0)) exp(-ikx) dk. 
CO 

-m 
(4.7) 

Thus F ( k )  is determined by (E(x ,  0)) .  
The evaluation of the integrals in equation (4.5) can be effected by use of the method 

of stationary phase. However, we will choose (E(x ,  0)) so that the integrations can be 
carried out in closed form. To this end we let 

( ~ ( x ,  0)) = exp(-x2/a2) 

F ( k )  = (ha2)1’2 exp(-sa k ). 

a > O ;  
then 

1 2 2  

With this choice of initial disturbance, equation (4.5) becomes 

( E ( x ,  t ) )  = - [ exp[i(x - c o t ) k ]  exp[ -f(cofa: + i a 2 ) k 2 ]  dk 
m a 

4 G  -m 

m a +- 1 e x p [ i ( x + c ~ t ) k ] e x p [ - ~ ( c ~ t a ~ + ~ a ~ ) k ~ ] d k .  
4 J r  -m 

(4.10) 

These integrals can be evaluated exactly by reference to a Fourier cosine transform 
table. Upon defining dimensionless variables .r = cot /a ,  1 = x / a ,  p = coa:/a, we have 

( E ( I ,  . r ) ) = $ ( ~ + p . r ) - ~ ’ ~  exp[-(l-.r12/(1 + ~ . r ) ] + t ( 1  + P T ) - ” ~  exp[-(I+7)2/(1 +p.r)]. 
(4.11) 

These are gaussian-shaped pulses travelling to the right and left of the origin with 
maxima at 1 = * T ;  however, the pulses spread and attenuate with time. This is probably 
best seen by examination of figure 1. 
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F i p r e l .  ( E ( l , ~ ) ) f o r P = l : - . .  - , ~ = 0 ; - - - - - , ~ = 2 ; - . - , ~ = 4 ; - , ~ = 8 .  Onlytheright 
halves of the curves are shown since ( E ( [ ,  7)) = ( E ( - / ,  T ) ) .  

The area under the pulse is a constant dependent on the initial pulse shape. For our 
problem 

CO 

[--(E(/ ,  T ) }  dl = ( $ 7 ~ ) ~ ’ ~ .  (4.12) 

The effect of the small random velocity is to redistribute the energy in the initial pulse 
but not to dissipate it (at least in this approximation). 

5. Comment 

The use of a medium in which there is a random process which possesses a delta- 
function temporal correlation and which is non-delta-function spatially correlated is 
not new with us. Recently, Lucke (1978) has used randomly stirred fluids with precisely 
these characteristics in order to study fully developed stationary turbulence. We 
believe such processes represent an approximation to reality in that the temporal 
correlations are really non-delta-function correlated, but nevertheless of still very short 
duration. The linear superposition of many spatically correlated impulses will behave 
in this manner. For longer-duration temporal correlations, our present results 
represent the lowest-order non-vanishing cumulant, and corrections are found from the 
cumulant procedure in a systematic manner. Work is currently progressing along these 
lines. 
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